Q5. Two equal sides of an isosceles triangle are given by the equations 7x-y+3=0 and x+y-3=0 and its third side passes through the point (1, -10). Determine the equation of the third side. [1984 - 4 Marks]

Sol 5. Let equations of equal sides AB and AC of isosceles $\triangle ABC$ are

$$7x - y + 3 = 0$$

and
$$x + y - 3 = 0$$

Now slope of AB = 7 and slope of AC = -1

The third side BC of the triangle passes through the point (1, -10). Let its slope be m.

As
$$AB = AC$$

$$\rightarrow$$
 tan $R = \tan C$

$$\Rightarrow \frac{7-m}{1+7m} = \pm \left(\frac{-1-m}{1-m}\right)$$

On taking '+' sign, we get

$$(7-m)(1-m)=-(1+m)(1+7m)$$

$$\Rightarrow$$
 7 - 8m + m² + 7m² + 8m + 1 = 0

$$\Rightarrow 8m^2 + 8 = 0 \Rightarrow m^2 + 1 = 0$$

It has no real solution.

On taking '-' sign, we get

$$(7-m)(1-m)=(1+m)(1+7m)$$

$$\Rightarrow$$
 7-8m+m²-7m²-8m-1=0

$$\Rightarrow -6m^2 - 16m + 6 = 0 \Rightarrow 3m^2 + 8m - 3 = 0$$

$$\Rightarrow$$
 $(3m-1)(m+3)=0 \Rightarrow m=1/3,-3$

:. The required line is

$$y+10=\frac{1}{3}(x-1)$$
 or $y+10=-3(x-1)$

i.e.
$$x-3y-31=0$$
 or $3x+y+7=0$.